Preparation and Characterization of $\mathrm{AlAsO}_{4}-3$ and $\mathrm{AlAsO}_{4}-4$, Two New Aluminoarsenates with Occluded 1,2-Diaminopropane

J. CHEN and R. XU ${ }^{1}$
Department of Chemistry, Jilin University, Changchun, People's Republic of China
L. LI
Wuhan Institute of Physics, Academia Sinica, Wuhan, People's Republic of China
and Y. XU and F. ZHOU
Institute of Synthesis and Catalysis, Jilin University, Changchun, People's Republic of China

Received June 14, 1989; in revised form January 22, 1990

Abstract

Two new amine-occluding aluminoarsenates (designated $\mathrm{AlAsO}_{4}-3$ and $\mathrm{AlAsO}_{4}-4$) with compositions $\mathrm{AlAsO}_{4} \cdot 0.3 \mathrm{C}_{3} \mathrm{H}_{\mathrm{HI}} \mathrm{N}_{2} \cdot 0.2 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{AlAsO} \mathrm{O}_{4} \cdot 0.2 \mathrm{C}_{3} \mathrm{H}_{10} \mathrm{~N}_{2} \cdot 0.4 \mathrm{H}_{2} \mathrm{O}$ were preparcd hydrothermally by using 1,2-diaminopropane as a template. The former is indexable on the basis of a cubic cell with $a=$ $7.722 \AA$ and the latter, a monoclinic one with $a=19.255, b=12.013, c=10.356 \AA$, and $\beta=$ 127.58°. $\mathrm{AlAsO}_{4}-3$ contains octahedrally coordinated Al atoms whercas $\mathrm{AlAsO}_{4}-4$ contains not only octahedrally coordinated Al atoms but also tetrahedrally coordinated ones. In $\mathrm{Al}-\mathrm{O}-\mathrm{As}$ bond force, these two compounds are different to a great extent from each other as well as from α-quartz-type AlAsO_{4} which contains AlO_{4} and AsO_{4} coordination units. When calcined at high temperature (e.g., $800^{\circ} \mathrm{C}$), both lose the template completely and the framework arsenic partially. © 1990 Academic Press, Inc.

Introduction

In 1982, a new family of aluminophosphates (designated $\mathrm{AlPO}_{4}-n$) with open frameworks and occluded amines was announced (1). On calcination, these compounds become porous and possess structures and properties similar to those of zeolites (2-4). So far, about 30 varieties of such aluminophosphates have been synthe-

[^0]sized and the family has been expanding constantly (5,6). As to aluminoarsenates with $\mathrm{Al} / \mathrm{As}=1$, the well-known ones are the dense AlAsO_{4} polymorphs $(7,8)$ and the $\mathrm{AlAsO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(9)$ with variscite structure. Earlier, we reported two novel aluminoarsenates (denoted as $\mathrm{AlAsO}_{4}-1$ and AlAs $\mathrm{O}_{4}-2$, respectively) with occluded ethanolamine (10) and tetramethylammonium hydroxide (11). The structure of $\mathrm{AlAsO}_{4}-1$ is related to APD (12) and can be described by net 622 of Smith (13).

To extend the family of $\mathrm{AlAsO}_{4}-n$, we have tried to synthesize amine-occluding aluminoarsenates using various amines as templates. This article will present the preparation of two new aluminoarsenates with occluded 1,2-diaminopropane (designated $\mathrm{AlAsO}_{4}-3$ and $\mathrm{AlAsO}_{4}-4$, respectively), their characterization based on X-ray powder diffraction, MAS NMR (magic angle spinning nuclear magnetic resonance) and IR spectrometries, and their thermal properties.

Experimental

Preparation of AlAsO_{4}-3. Aluminum isopropoxide, pyroarsenic acid, template 1,2diaminopropane (DAP), and water were mixed in a mole ratio of $1.0 \mathrm{Al}_{2} \mathrm{O}_{3}: 1.4$ $\mathrm{As}_{2} \mathrm{O}_{5}: 0.7$ DAP : $40 \mathrm{H}_{2} \mathrm{O}$. The reaction mixture was stirred until homogeneous, then sealed in a Teflon-lined autoclave and heated at $200^{\circ} \mathrm{C}$ for 5 days. The product was filtered, washed with water, and dried at ambient temperature.
Preparation of $\mathrm{AlAsO}_{4}-4$. The procedure was the same as for $\mathrm{AlAsO}_{4}-3$ except that the mole ratio adopted was $1.0 \mathrm{Al}_{2} \mathrm{O}_{3}: 1.5$ $\mathrm{As}_{2} \mathrm{O}_{5}: 1.0$ DAP:40 $\mathrm{H}_{2} \mathrm{O}$.
The SEM (scanning electronic micrographs) were taken with a Hitachi X-650 SEM instrument. The X-ray powder diffraction data were recorded on a Rigaku D/MAX IIIA diffractometer by using $\mathrm{Cu} K \alpha$ ($\lambda=1.5418 \AA$) for radiation and silicon as external standard. The elemental analyses were performed on a Perkin-Elmer 240C elemental analyzer; IR spectra, on a Nicolet 5DX IR spectrometer; and DTA-TG, on a Rigaku thermobalance.
The ${ }^{27} \mathrm{Al}$ MAS NMR measurements were carried out on a Bruker MSL-400 NMR spectrometer with a magnetic field strength of 9.4 T . The spinning rates were 5 kHz and the spectra were obtained at 104.3 MHz . The single pulse excitation (no high power decoupling) technique was used and the ac-
quisition parameters adopted were: pulse width, $6.5 \mu \mathrm{sec}$; recycle delay, 1 sec ; number of acquisition, 500 ; acquisition time, 10 msec . The line broadening factors were 20 Hz . The chemical shifts obtained were relative to external $\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{3+}$. Incomplete removal of second-order quadrupole effects were suggested by the small spinning side bands (asterisks in Fig. 2).

Results and Discussion

$\mathrm{AlAsO}_{4}-3$ appears to be cubic-shaped and $\mathrm{AlAsO}_{4}-4$, rhombic- plate-shaped (Fig. 1). One can see from the graphs that the latter is much larger in size than the former. To obtain pure phases of both, the reaction conditions had to be controlled carefully. In general, $\mathrm{AlAsO}_{4}-3$ and $\mathrm{AlAsO}_{4}-4$ crystallized simultaneously, and the larger the value of $\mathrm{As}_{2} \mathrm{O}_{5} /\left(\mathrm{Al}_{2} \mathrm{O}_{3}+\right.$ DAP $)$, the more the former was contained in the reaction product. It is of interest that for $\mathrm{AlAsO}_{4}-3$, after a certain period (e.g., 5 months) a structural change from tetragonal form to cubic one occurred on the basis of the Xray powder diffraction data; on the other hand, nothing happened to $\mathrm{AlAsO}_{4}-4$ with time. This phenomenon is under further investigation. In this article the characterization involved is referred to the $\mathrm{AlAsO}_{4}-3$ with cubic lattice symmetry.

Chemical and elemental analyses gave a composition of $\mathrm{AlAsO}_{4} \cdot 0.3 \mathrm{C}_{3} \mathrm{H}_{10} \mathrm{~N}_{2}$. $0.2 \mathrm{H}_{2} \mathrm{O}$ for $\mathrm{AlAsO}_{4}-3$ and one of AlAsO_{4}. $0.2 \mathrm{C}_{3} \mathrm{H}_{10} \mathrm{~N}_{2} \cdot 0.4 \mathrm{H}_{2} \mathrm{O}$ for $\mathrm{AlAsO}_{4}-4$. The Xray powder diffraction data, which showed that both $\mathrm{AlAsO}_{4}-3$ and $\mathrm{AlAsO}_{4}-4$ are of new structure, were indexed with the TREOR program (14). The indexed results suggest that the crystal lattice of $\mathrm{AlAsO}_{4}-3$ has cubic symmetry with cell dimension a $=7.722 \AA$ whereas that of $\mathrm{AlAsO}_{4}-4$ is monoclinic with cell parameters $a=19.255, b$ $=12.013, c=10.356 \AA$ and $\beta=127.58^{\circ}$. All the observed and calculated interplanar d -

Fig. 1. Scanning electronic micrographs of (a) $\mathrm{AlAsO}_{4}-3$ and (b) $\mathrm{AlAsO}_{4}-4$.
spacings, and the Miller indices are presented in Tables I and II, respectively.
Figure 2 shows the experimental ${ }^{27} \mathrm{Al}$ MAS NMR spectra of $\mathrm{AlAsO}_{4}-1$ (10), $\mathrm{AlAsO}_{4}-3$, and $\mathrm{AlAsO}_{4}-4$. The corresponding data are listed in Table III. A single crystal structural analysis showed (10) that $\mathrm{AlAsO}_{4}-1$ contained two types of Al atoms. One type each was tetrahedrally coordinated and the other each was octanedrally coordinated by oxygen atoms. Several other papers (15-17) described that for open framework aluminophosphates with occluded amines, tetrahedrally coordinated Al atoms gave MAS NMR signals at chemical shifts between 20 and 50 ppm and octahedrally coordinated Al atoms gave ones at chemical shifts around or below 0 ppm . That is, the chemical shifts of AlO_{4} units are always higher than those of AlO_{6} units. This rule is expected to be applicable to other types of compounds considering that the Al in an AlO_{4} unit is less shielded than that in an AlO_{6} unit (18). In Fig. 2, $\mathrm{AlAsO}_{4}-1$ exhibits two signals with maxima at 41.4 and 1.7 ppm , respectively. The former value is close to that of α-quartz type AlAsO_{4} (19) containing only AlO_{4} coordination units.

Without doubt, the signal of $\mathrm{AlAsO}_{4}-1$ at 41.4 ppm corresponds to the tetrahedrally coordinated Al atoms and that of it at 1.7 ppm to the octahedrally coordinated ones.
For $\mathrm{AlAsO}_{4}-3$, the ${ }^{27} \mathrm{Al}$ NMR spectrum shows a single peak with maximum at chemical shift 0.1 ppm , very close to the value of the higher-field signal of $\mathrm{AlAsO}_{4}-1$. This reveals that the Al atoms in $\mathrm{AlAsO}_{4}-3$ are octahedrally coordinated. In contrast, $\mathrm{AlAsO}_{4}-4$ gives two ${ }^{27} \mathrm{Al}$ NMR signals with

Fig. 2. ${ }^{27} \mathrm{Al}$ MAS NMR spectra of (a) $\mathrm{AlAsO}_{4}-1$, (b) $\mathrm{AlAsO}_{4}-3$, and (c) $\mathrm{AlAsO}_{4}-4$.

TABLE I
X-ray Powder Diffraction Data for AlAsO_{4} - 3

$I_{\text {obsd }}$	$d_{\text {obsd }}(\AA)$	$d_{\text {calcd }}(\AA)$	$h k l$
vs	7.725	7.722	100
s	4.466	4.458	111
m	3.8664	3.8611	200
vw	3.4534	3.4535	210
m	3.1533	3.1526	211
m	2.7295	2.7302	220
vw	2.5750	2.5740	$300 / 221$
w	2.4428	2.4419	310
w	2.3288	2.3283	311
vw	2.2295	2.2291	222
vvw	2.1402	2.1417	320
vvw	2.0645	2.0638	321
vvw	1.9306	1.9305	400
vvw	1.8725	1.8729	$410 / 322$
vvw	1.8200	1.8201	$411 / 330$
vw	1.7716	1.7716	311
vw	1.7267	1.7267	420
vvw	1.6844	1.6851	421
vvw	1.6465	1.6464	332
vw	1.5767	1.5763	422
vw	1.5446	1.5446	$500 / 430$
vvw	1.5139	1.5144	$510 / 431$
vw	1.4858	1.4861	$511 / 333$
vvw	1.4102	1.4099	521
vw	1.3648	1.3651	440
vvw	1.3441	1.3443	$522 / 441$
vw	1.3055	1.3053	531
vvw	1.2875	1.2870	$600 / 442$
vvw	1.2207	1.2210	620
vvw	1.2059	1.2060	$621 / 540$
vvw	1.1777	1.1776	533
vvw	1.1641	1.1642	622

maxima at 45.9 and 0.1 ppm , respectively. The former is even 4.5 ppm larger than the lower-field chemical shift value of AlAs $\mathrm{O}_{4}-1$, whereas the latter is just the same as the chemical shift value of $\mathrm{AlAsO}_{4}-3$. It is reasonable that $\mathrm{AlAsO}_{4}-4$ contains both tetrahedrally coordinated Al atoms and octahedrally coordinated Al atoms. As in several $\mathrm{AlPO}_{4}-n(20-22)$, the two extra coordinating oxygen atoms of the AlO_{6} units in $\mathrm{AlAsO}_{4}-4$ as well as in $\mathrm{AlAsO}_{4}-3$ may be attributed to OH groups which result from

TABLE II
X-ray Powder Diffraction Data for $\mathrm{AlAsO}_{4}-4$

$I_{\text {obsd }}$	$d_{\text {obsd }}(\AA)$	$d_{\text {cakd }}(\AA)$	$h k l$
vs	10.327	10.314	$\overline{1} 01$
vw	5.276	5.284	111
vw	5.152	5.157	$\overline{2} 02$
vw	4.756	4.756	102
		4.739	$\overline{2} 12$
w	4.186	4.185	$\overline{4} 12$
w	4.110	4.104	002
vw	3.8792	3.8815	320
vw	3.8548	3.8543	$\overline{3} 2$
vw	3.6360	3.6358	410
w	3.4422	3.4378	$\overline{3} 03$
vvw	3.1441	3.1463	330
		3.1430	521
vvw	3.0311	3.0330	103
vvw	2.8306	2.8304	$\overline{6} 2$
vvw	2.7204	2.7208	520
		2.7202	$\overline{3} 41$
vvw	2.4943	2.4919	$\overline{4} 42$
		2.4909	$\overline{7} 2$
vvw	2.4588	2.4594	$\overline{6} 14$
vvw	2.3651	2.3693	$\overline{4} 24$
		2.3676	$\overline{8} 02$
vvw	2.3218	2.3229	$\overline{8} 12$
		2.3201	$\overline{2} 1$
vvw	2.0646	2.0636	611
		2.0627	$\overline{5} 05$
vvw	1.7225	1.7220	830

the transfer of protons from the occluded $\mathrm{H}_{2} \mathrm{O}$ molecules to the template molecules.

Table IV presents the frequencies of the main IR absorptions of zeolite NaY , zeolite ZSM-5 with occluded tetramethylam-

TABLE III

$$
\begin{gathered}
{ }^{27} \mathrm{Al} \text { MAS NMR Data FOR } \mathrm{AlAsO}_{4}-1, \mathrm{AlAsO}_{4}-3, \\
\text { AND } \mathrm{AlAsO}_{4}-4
\end{gathered}
$$

$\mathrm{AlAsO}_{4}-n$	Chemical shift (ppm)	Half width (Hz)
1	$41.4,1.7$	380,600
3	0.1	1360
4	$45.9,0.1$	630,830

TABLE IV
Frequencies of the Main IR Absorptions of NaY, \quad ZSM- $5, \quad \alpha$ - $\mathrm{AlPO}_{4}, \quad \mathrm{AlPO}_{4}-5, \quad \alpha$ - AlAsO_{4}, $\mathrm{AlAsO}_{4}-1, \mathrm{AlAsO}_{4} 3$, and $\mathrm{AlAsO}_{4} 4$

Material	Frequency $\left(\mathrm{cm}^{-1}\right)$	Ref.
Zeolite NaY	985	(23)
Zeolite ZSM-5	1100	(24)
$\alpha-\mathrm{AlPO}_{4}$	1124	This work
$\mathrm{AlPO}_{4}-5$	1125	(28)
$\alpha-\mathrm{AlAsO}_{4}$	945	(7)
$\mathrm{AlAsO}_{4}-1^{a}$	$962,871,920$	This work
$\mathrm{AlAsO}_{4}-3$	857	This work
$\mathrm{AlAsO}_{4}-4^{a}$	$779,963,920$	This work

${ }^{a}$ The frequencies are in order of intensity.
monium, $\alpha-\mathrm{AlPO}_{4}, \mathrm{AlPO}_{4}-5$ with occluded triethylamine, α - AlAsO_{4}, $\mathrm{AlAsO}_{4}-1$, AlAs $\mathrm{O}_{4}-3$, and $\mathrm{AlAsO}_{4}-4$. The corresponding IR spectra of $\mathrm{AlAsO}_{4}-3$ and $\mathrm{AlAsO}_{4}-4$ within 4000 to $400 \mathrm{~cm}^{-1}$ are shown in Fig. 3. According to Flanigen et al., the main IR absorptions ($1200-950 \mathrm{~cm}^{-1}$) of zeolites with open frameworks composed of SiO_{4} and AlO_{4} units are always assigned to the $T-\mathrm{O}$ ($T=\mathrm{Si}$ and Al without distinguishing between them) asymmetric stretch vibrations (23-25). In general, with increase of the $\mathrm{Si} / \mathrm{Al}$ ratio in the framework, the main IR absorption shifts toward higher frequency. The main IR absorptions of α-quartz type $\mathrm{AlPO}_{4}(26,27)$ and $\mathrm{AlPO}_{4}-5(28)$ around $1120 \mathrm{~cm}^{-1}$ are also assigned to the $T-\mathrm{O}$ (T $=\mathrm{Al}$ and P) asymmetric stretch vibrations without distinguishing between the Al and the P atoms. In addition, the removal of the occluded templates has no influence on the main IR absorptions both for the ZSM-5 and the $\mathrm{AlPO}_{4}-5$, revealing that the templates do not contribute to the main IR absorptions of these compounds.

It is expected that the $T-\mathrm{O}$ vibrational absorptions of aluminoarsenates should shift toward lower frequencies compared with the corresponding absorptions of aluminophosphates because of the larger mass of

As relative to that of P . In fact, α-quartz type AlAsO_{4} shows (7) a strong IR vibrational band with maximum at $945 \mathrm{~cm}^{-1}$, almost $200 \mathrm{~cm}^{-1}$ lower than the corresponding vibrational frequencies for $\alpha-\mathrm{AlPO}_{4}$ and $\mathrm{AlPO}_{4}-5$. The strongest IR absorption of $\mathrm{AlAsO}_{4}-3$ is at $857 \mathrm{~cm}^{-1}$, even $88 \mathrm{~cm}^{-1}$ lower than that of $\alpha-\mathrm{AlAsO}_{4}$. Similarly, we assign the absorption to the $T-\mathrm{O}$ ($T=\mathrm{Al}$ and As) asymmetric stretch vibration neglecting the influence of the occluded template as for ZSM-5 and $\mathrm{AlPO}_{4}-5$. The relatively lower vibrational frequency suggests that the $\mathrm{Al}-\mathrm{O}-\mathrm{As}$ bond force in $\mathrm{AlAsO}_{4}-3$ is weaker than that in α - AlAsO_{4}. This result may be related to the octahedrally coordinated Al atoms in the former. $\mathrm{AlAsO}_{4}-4$ has an extremely different whereas much more complicated IR spectrum. The strongest absorption band appears at $779 \mathrm{~cm}^{-1}$, meanwhile, there are another two strong absorptions with intensities next to the strongest one at 963 and $920 \mathrm{~cm}^{-1}$, respectively. Since there is no strong absorption around these frequencies in the corresponding spectrum of $\mathrm{AlAsO}_{4}-3$ whose template is the same as that of $\mathrm{AlAsO}_{4}-4$, all the three absorptions for $\mathrm{AlAsO}_{4}-4$ must be attributed to the framework of $\mathrm{AlAsO}_{4}-4$ rather than

Fig. 3. IR spectra of (a) $\mathrm{AlAsO}_{4}-3$ and (b) $\mathrm{AlAsO}_{4}-4$.
the template it occludes. The first is 166 cm^{-1} lower in frequency than the strong absorption of α - AlAsO_{4}. The second and the third absorptions are close to the higherfrequency absorptions of $\mathrm{AlAsO}_{4}-1$ as well as the strong absorption of $\alpha-\mathrm{AlAsO}_{4}$. Consequently, we conclude that $\mathrm{AlAsO}_{4}-4$ may contain $\mathrm{Al}-\mathrm{O}-\mathrm{As}$ with bond force as strong as α - AlAsO_{4} and that with bond force even weaker than $\mathrm{AlAsO}_{4}-3$. Further assignment of the absorptions is difficult.

To investigate the thermal properties of $\mathrm{AlAsO}_{4}-3$ and $\mathrm{AlAsO}_{4}-4$, DTA-TG analyses in N_{2} atmosphere were carried out and the curves are shown in Fig. 4. For $\mathrm{AlAsO}_{4}-3$, there exists an endothermic effect near $360^{\circ} \mathrm{C}$ and two exothermic ones around 507 and $790^{\circ} \mathrm{C}$, respectively. The TG curve can be divided into two stages ranging from 300 to $650^{\circ} \mathrm{C}$ and 650 to $800^{\circ} \mathrm{C}$. The corresponding weight losses are 20.7 and 21.9%, respectively with a total of 42.6%. Apparently, some amount of framework atoms escaped from the solid after calcination at high temperature since the content of the template and water did not exceed 15% in $\mathrm{AlAsO}_{4}-3$. The chemical analysis showed that the $\mathrm{As} / \mathrm{Al}$ ratio in the calcination residual of $\mathrm{AlAsO}_{4}-3$ was

Fig. 4. DTA-TG curves in N_{2} atmosphere of (a) AlAsO_{4}^{-3} and (b) AlAsO_{4}^{-4}. Temperature rate $=10^{\circ} \mathrm{C} /$ min and N_{2} stream speed $=50 \mathrm{ml} / \mathrm{min}$.
as low as 0.3 , revealing that it was arsenic that escaped from the solid at high temperature. Furthermore, the major components of the gas produced within $300-400^{\circ} \mathrm{C}$ were confirmed by mass spectroscopy to be water and decomposition products of 1,2diaminopropane. This suggests that the thermal effect around $360^{\circ} \mathrm{C}$ should be mainly attributed to the sublimation of the occluded water and the pyrolysis of the template. The exothermic effect around $507^{\circ} \mathrm{C}$ may be due to the oxidation-reduction of the framework $\mathrm{As}(\mathrm{V})$ and the template, and that around $790^{\circ} \mathrm{C}$ to a phase transition of the solid since there is no distinct weight loss observed corresponding to the effect. After calcination at $400^{\circ} \mathrm{C}$, $\mathrm{AlAsO}_{4}-3$ becomes amorphous in terms of the X-ray powder diffraction pattern, indicating this compound is not as stable as most $\mathrm{AlPO}_{4}-n$. $\mathrm{AlAsO}_{4}-4$ shows three distinct endothermic DTA effects with peak maxima at 271,361 , and $625^{\circ} \mathrm{C}$, respectively. The mass spectroscopy proves that the first is exclusively attributed to water loss and the second to both templete pyrolysis and water loss. This result implies the presence of two types of water molecules in $\mathrm{AlAsO}_{4}-4$, one being bonded loosely and the other being bonded tightly. The third effect, that around $625^{\circ} \mathrm{C}$, may be assigned to a dramatic loss of the framework arsenic since at such high temperature template molecules should not remain for pyrolysis. At every temperature around which thermal effect appears, evident weight loss is observed on the TG curve. In addition, there is a pronounced weight loss around $800^{\circ} \mathrm{C}$ without observable thermal effect. The total weight loss for AlA-$\mathrm{sO}_{4}-4$ is about 37.8%, less than that of $\mathrm{AlAsO}_{4}-3$ but also suggests the sublimation of framework arsenic from the solid because the content of the template and water is only about 12% according to the composition. The As/Al ratio in the calcination residual of $\mathrm{AlAsO}_{4}-4$ is about 0.5,
well comparable to the value for AlAs $\mathrm{O}_{4}-3$. Differing from that of $\mathrm{AlAsO}_{4}-3$, the DTA curve of $\mathrm{AlAsO}_{4}-4$ shows no distinct exothermic effect, suggesting that the reaction of $\mathrm{As}(\mathrm{V})$-template is not dramatic. It is also indicated by X-ray powder diffraction that calcined at $400^{\circ} \mathrm{C}, \mathrm{AlA}$ $\mathrm{sO}_{4}-4$ changes from crystalline form to amorphous form.

In summary, the successful preparation of the third and fourth amine-occluding aluminoarsenates illustrates that as the $\mathrm{AlPO}_{4}-n$ family, the $\mathrm{AlAsO}_{4}-n$ family may be extended to include a large number of members. Generally, $\mathrm{AlAsO}_{4}-n$ contain octahedrally coordinated Al atoms. Some of them contain both octahedrally and tetrahedrally coordinated Al atoms. Unlike $\mathrm{AlPO}_{4}-n, \mathrm{AlAsO}_{4}-n$ are unstable at higher temperature. With the increase of the calcination temperature, the framework arsenic as well as the template occluded volatilize from the solid, revealing that $\mathrm{AlAsO}_{4}-n$ are not suitable to be used as molecular sieves as $\mathrm{AlPO}_{4}-n$ are.

References

1. S. T. Wilson, B. M. Lok, C. A. Messina, T. R. Cannan and E. M. Flanigen, J. Amer. Chem. Soc. 104, 1146 (1982).
2. J. V. Smith and W. J. Dytrych, Nature (London) 309, 607 (1984).
3. H. Rastelli, B. M. Lok, J. A. Duisman, D. E. Earls, and J. T. Mullhaupt, Canad. J. Chem. Eng 60, 44 (1982).
4. J. V. Smith, Chem. Rev. 88, 149 (1988).
5. E. M. Flanigen, B. M. Lok, R. L. Patton, and S. 'T. Wilson, Pure Appl. Chem. 58(10), 1351 (1986).
6. M. E. Davis, C. Saldarriaga, C. Montes, J. Garces, and C. Crowder, Nature (London) 331, 698 (1988).
7. A. P. Young, C. B. Sclar, and C. M. Schwartz, Z. Kristallogr. 118, 223 (1963).
8. A. Goiffon, J. C. Jumas, M. Maurin, and E. Philippot, J. Solid State Chem. 61, 384 (1986).
9. P. P. Tarte and M. Th. Paques-Ledent, Bull. Soc. Chim. Fr. 750 (1968).
10. G. Yang, L. Li, J. Chen, and R. Xu, J. Chem. Soc., Chem. Commun. 810 (1989).
11. J. Chen and R. Xu, J. Solid State Chem. 80, 149 (1989).
12. W. M. Meier and D. H. Olson, "Atlas of Zeolite Structure Types," 2nd ed., p. 28, Butterworths/ Int. Zeolite Assoc., 1987.
13. J. V. Smith, "Proc. 8th Intl. Zeolite Conf., Studies in Surf. Sci. Catal., 49A" (P. A. Jacobs and R. A. Van Souten, Eds.), p. 29, Elsevier, Amsterdam/ New York (1989).
14. P. E. Werner, L. Eriksson, and M. Westdahl, J. Appl. Crystallogr. 18, 367 (1985).
15. D. Muller, E. Jahn, B. Fahlke, G. Ladwig, and U. Haubenreisser, Zeolites 5, 53 (1985).
16. I. P. Appleyard, R. K. Harris, and F. R. Fitch, Zeolites 6, 428 (1986).
17. C. S. Blackwell and R. L. Patton, J. Phys. Chem. 92, 3965 (1988).
18. R. Dupree and M. E. Smith, J. Chem. Soc., Chem. Commun. 1483 (1988).
19. N. S. Kotsarenko, V. M. Mastikhin, I. L. Mudrakouskil and V. P. Shmachkova, React. Kinet. Catal. Lett. 30(2), 375 (1986).
20. J. B. Parise, J. Chem. Soc., Chem. Commun. 606 (1985).
21. J. B. Parise, Inorg. Chem. 24, 4312 (1985).
22. J. M. Bennett, J. M. Cohen, G. Artioli, J. J. Pluth, and J. V. Smith, Inorg. Chem. 24, 188 (1985).
23. E. M. Flanigen, H. Kathami, and H. A. SzyMANSKI, "Adv. Chem. Series 101, Molecular Sieve Zeolites," p. 201 (1971).
24. P. A. Jacobs, H. K. Bayer, and J. Valyon, Zeolites 1, 161 (1981).
25. V. A. Maroni, Appl. Spectrosc. 42(3), 488 (1988).
26. J. T. Scott, Phys. Rev. B 4(4), 1360 (1971).
27. K. Byrappa, S. Srikantaswamy, G. S. Gopalakrishna, and V. Venkatachalapathy, J. Mater. Sci. Lett. 5, 203 (1986).
28. Y. Xu, X. Jiang, X. Meng, and R. Xu, Acta Pet. Sin. 3, 101 (1987).

[^0]: ${ }^{1}$ To whom correspondence should be addressed.

