Preparation and Characterization of $A|AsO_4-3$ and $A|AsO_4-4$, Two New Aluminoarsenates with Occluded 1,2-Diaminopropane

J. CHEN AND R. XU¹

Department of Chemistry, Jilin University, Changchun, People's Republic of China

L. LI

Wuhan Institute of Physics, Academia Sinica, Wuhan, People's Republic of China

AND Y. XU AND F. ZHOU

Institute of Synthesis and Catalysis, Jilin University, Changchun, People's Republic of China

Received June 14, 1989; in revised form January 22, 1990

Two new amine-occluding aluminoarsenates (designated AlAsO₄-3 and AlAsO₄-4) with compositions AlAsO₄ \cdot 0.3C₃H₁₀N₂ \cdot 0.2H₂O and AlAsO₄ \cdot 0.2C₃H₁₀N₂ \cdot 0.4H₂O were prepared hydrothermally by using 1,2-diaminopropane as a template. The former is indexable on the basis of a cubic cell with a = 7.722 Å and the latter, a monoclinic one with a = 19.255, b = 12.013, c = 10.356 Å, and $\beta = 127.58^{\circ}$. AlAsO₄-3 contains octahedrally coordinated Al atoms whereas AlAsO₄-4 contains not only octahedrally coordinated Al atoms but also tetrahedrally coordinated ones. In Al-O-As bond force, these two compounds are different to a great extent from each other as well as from α -quartz-type AlAsO₄ which contains AlO₄ and AsO₄ coordination units. When calcined at high temperature (e.g., 800°C), both lose the template completely and the framework arsenic partially. \circ 1990 Academic Press, Inc.

Introduction

In 1982, a new family of aluminophosphates (designated $AIPO_4-n$) with open frameworks and occluded amines was announced (1). On calcination, these compounds become porous and possess structures and properties similar to those of zeolites (2-4). So far, about 30 varieties of such aluminophosphates have been synthe-

¹ To whom correspondence should be addressed.

with Al/As = 1, the well-known ones are the dense AlAsO₄ polymorphs (7, 8) and the AlAsO₄ · 2H₂O (9) with variscite structure. Earlier, we reported two novel aluminoarsenates (denoted as AlAsO₄-1 and AlAs O₄-2, respectively) with occluded ethanolamine (10) and tetramethylammonium hydroxide (11). The structure of AlAsO₄-1 is related to APD (12) and can be described by net 622 of Smith (13).

sized and the family has been expanding constantly (5, 6). As to aluminoarsenates

To extend the family of $AlAsO_4-n$, we have tried to synthesize amine-occluding aluminoarsenates using various amines as templates. This article will present the preparation of two new aluminoarsenates with occluded 1,2-diaminopropane (designated $AlAsO_4-3$ and $AlAsO_4-4$, respectively), their characterization based on X-ray powder diffraction, MAS NMR (magic angle spinning nuclear magnetic resonance) and IR spectrometries, and their thermal properties.

Experimental

Preparation of AlAsO₄-3. Aluminum isopropoxide, pyroarsenic acid, template 1,2diaminopropane (DAP), and water were mixed in a mole ratio of 1.0 Al₂O₃:1.4 As₂O₅:0.7 DAP:40 H₂O. The reaction mixture was stirred until homogeneous, then sealed in a Teflon-lined autoclave and heated at 200°C for 5 days. The product was filtered, washed with water, and dried at ambient temperature.

Preparation of $AlAsO_4-4$. The procedure was the same as for $AlAsO_4-3$ except that the mole ratio adopted was 1.0 Al_2O_3 : 1.5 As_2O_5 : 1.0 DAP: 40 H₂O.

The SEM (scanning electronic micrographs) were taken with a Hitachi X-650 SEM instrument. The X-ray powder diffraction data were recorded on a Rigaku D/MAX IIIA diffractometer by using Cu $K\alpha$ ($\lambda = 1.5418$ Å) for radiation and silicon as external standard. The elemental analyses were performed on a Perkin-Elmer 240C elemental analyzer; IR spectra, on a Nicolet 5DX IR spectrometer; and DTA-TG, on a Rigaku thermobalance.

The ²⁷Al MAS NMR measurements were carried out on a Bruker MSL-400 NMR spectrometer with a magnetic field strength of 9.4 T. The spinning rates were 5 kHz and the spectra were obtained at 104.3 MHz. The single pulse excitation (no high power decoupling) technique was used and the ac-

quisition parameters adopted were: pulse width, 6.5 μ sec; recycle delay, 1 sec; number of acquisition, 500; acquisition time, 10 msec. The line broadening factors were 20 Hz. The chemical shifts obtained were relative to external Al(H₂O)₆³⁺. Incomplete removal of second-order quadrupole effects were suggested by the small spinning side bands (asterisks in Fig. 2).

Results and Discussion

AlAsO₄-3 appears to be cubic-shaped and AlAsO₄-4, rhombic-plate-shaped (Fig. 1). One can see from the graphs that the latter is much larger in size than the former. To obtain pure phases of both, the reaction conditions had to be controlled carefully. In general, $AlAsO_4-3$ and $AlAsO_4-4$ crystallized simultaneously, and the larger the value of $As_2O_5/(Al_2O_3 + DAP)$, the more the former was contained in the reaction product. It is of interest that for AlAsO₄-3, after a certain period (e.g., 5 months) a structural change from tetragonal form to cubic one occurred on the basis of the Xray powder diffraction data; on the other hand, nothing happened to $AlAsO_4-4$ with time. This phenomenon is under further investigation. In this article the characterization involved is referred to the $AlAsO_4-3$ with cubic lattice symmetry.

Chemical and elemental analyses gave a composition of AlAsO₄ \cdot 0.3C₃H₁₀N₂ \cdot 0.2H₂O for AlAsO₄-3 and one of AlAsO₄ \cdot 0.2C₃H₁₀N₂ \cdot 0.4H₂O for AlAsO₄-4. The X-ray powder diffraction data, which showed that both AlAsO₄-3 and AlAsO₄-4 are of new structure, were indexed with the TREOR program (14). The indexed results suggest that the crystal lattice of AlAsO₄-3 has cubic symmetry with cell dimension a = 7.722 Å whereas that of AlAsO₄-4 is monoclinic with cell parameters a = 19.255, b = 12.013, c = 10.356 Å and $\beta = 127.58^{\circ}$. All the observed and calculated interplanar d-

FIG. 1. Scanning electronic micrographs of (a) AlAsO₄-3 and (b) AlAsO₄-4.

spacings, and the Miller indices are presented in Tables I and II, respectively.

Figure 2 shows the experimental ²⁷Al MAS NMR spectra of $AlAsO_4-1$ (10), AlAsO₄-3, and AlAsO₄-4. The corresponding data are listed in Table III. A single crystal structural analysis showed (10) that $AlAsO_4 - 1$ contained two types of Al atoms. One type each was tetrahedrally coordinated and the other each was octahedrally coordinated by oxygen atoms. Several other papers (15-17) described that for open framework aluminophosphates with occluded amines, tetrahedrally coordinated Al atoms gave MAS NMR signals at chemical shifts between 20 and 50 ppm and octahedrally coordinated Al atoms gave ones at chemical shifts around or below 0 ppm. That is, the chemical shifts of AlO₄ units are always higher than those of AlO₆ units. This rule is expected to be applicable to other types of compounds considering that the Al in an AlO_4 unit is less shielded than that in an AlO₆ unit (18). In Fig. 2, AlAsO₄-1 exhibits two signals with maxima at 41.4 and 1.7 ppm, respectively. The former value is close to that of α -quartz type AlAsO₄ (19) containing only AlO₄ coordination units.

Without doubt, the signal of $AIAsO_4-1$ at 41.4 ppm corresponds to the tetrahedrally coordinated Al atoms and that of it at 1.7 ppm to the octahedrally coordinated ones.

For AlAsO₄-3, the ²⁷Al NMR spectrum shows a single peak with maximum at chemical shift 0.1 ppm, very close to the value of the higher-field signal of AlAsO₄-1. This reveals that the Al atoms in AlAsO₄-3 are octahedrally coordinated. In contrast, AlAsO₄-4 gives two ²⁷Al NMR signals with

FIG. 2. ²⁷Al MAS NMR spectra of (a) AlAsO₄-1, (b) AlAsO₄-3, and (c) AlAsO₄-4.

TABLE II

 I _{absd}	d _{absd} (Å)	d _{calcd} (Å)	h k l	I _{obsd}	d _{obsd} (Å)	d _{calcd} (Å)	h k l
vs	7.725	7.722	100	vs	10.327	10.314	101
\$	4.466	4.458	1 1 1	vw	5.276	5.284	<u>1</u> 11
m	3.8664	3.8611	200	vw	5.152	5.157	202
vw	3.4534	3.4535	2 1 0	vw	4.756	4.756	1 0 2
m	3.1533	3.1526	2 1 1			4.739	212
m	2.7295	2.7302	220	w	4.186	4.185	412
vw	2.5750	2.5740	3 0 0/2 2 1	w	4.110	4.104	0 0 2
w	2.4428	2.4419	310	vw	3.8792	3.8815	320
w	2.3288	2.3283	311	vw	3.8548	3.8543	322
vw	2.2295	2.2291	2 2 2	vw	3.6360	3.6358	4 1 0
vvw	2.1402	2.1417	3 2 0	w	3.4422	3.4378	303
vvw	2.0645	2.0638	321	vvw	3.1441	3.1463	330
vvw	1.9306	1.9305	400			3.1430	521
vvw	1.8725	1.8729	4 1 0/3 2 2	vvw	3.0311	3.0330	$\overline{1}$ 0 3
vvw	1.8200	1.8201	4 1 1/3 3 0	vvw	2.8306	2.8304	622
vw	1.7716	1.7716	3 3 1	vvw	2.7204	2.7208	520
vw	1.7267	1.7267	4 2 0			2.7202	341
vvw	1.6844	1.6851	4 2 1	vvw	2.4943	2.4919	4 4 2
vvw	1.6465	1.6464	3 3 2			2.4909	722
vw	1.5767	1.5763	422	vvw	2.4588	2.4594	614
vw	1.5446	1.5446	5 0 0/4 3 0	vvw	2.3651	2.3693	4 4 4 4
vvw	1.5139	1.5144	5 1 0/4 3 1			2.3676	802
vw	1.4858	1.4861	5 1 1/3 3 3	vvw	2.3218	2.3229	8 1 2
vvw	1.4102	1.4099	521			2.3201	$\bar{2}$ 5 1
vw	1.3648	1.3651	4 4 0	vvw	2.0646	2.0636	611
vvw	1.3441	1.3443	5 2 2/4 4 1			2.0627	505
vw	1.3055	1.3053	531	vvw	1.7225	1.7220	830
vvw	1.2875	1.2870	6 0 0/4 4 2				
vvw	1.2207	1.2210	620				
vvw	1.2059	1.2060	6 2 1/5 4 0				
vvw	1.1777	1.1776	533				

X-RAY POWDER DIFFRACTION DATA FOR AlAsO4-3

X-ray Powder Diffraction Data for $AlAsO_4-4$

the transfer of protons from the occluded H_2O molecules to the template molecules.

Table IV presents the frequencies of the main IR absorptions of zeolite NaY, zeolite ZSM-5 with occluded tetramethylam-

TABLE III

²⁷ Al	MAS	NMR	Data	FOR	AlAsO ₄ -1	AlAs O_4 -3,
			AND	AlAs	6O ₄ -4	

AlAsO ₄ -n	Chemical shift (ppm)	Half width (Hz)
1	41.4, 1.7	380, 600
3	0.1	1360
4	45.9, 0.1	630, 830

maxima at 45.9 and 0.1 ppm, respectively. The former is even 4.5 ppm larger than the lower-field chemical shift value of AlAs O_4-1 , whereas the latter is just the same as the chemical shift value of AlAs O_4-3 . It is reasonable that AlAs O_4-4 contains both tetrahedrally coordinated Al atoms and octahedrally coordinated Al atoms. As in several AlPO₄-n (20-22), the two extra coordinating oxygen atoms of the AlO₆ units in AlAsO₄-4 as well as in AlAsO₄-3 may be attributed to OH groups which result from

1.1642

vvw

1.1641

6 2 2

TABLE IV

FREQUENCIES OF THE MAIN IR ABSORPTIONS OF NaY, ZSM-5, α -AlPO₄, AlPO₄-5, α -AlAsO₄, AlAsO₄-1, AlAsO₄-3, and AlAsO₄-4

Material	Frequency (cm ⁻¹)	Ref.	
Zeolite NaY	985	(23)	
Zeolite ZSM-5	1100	(24)	
α-AlPO₄	1124	This work	
AlPO ₄ -5	1125	(28)	
α-AlAsO₄	945	(7)	
AlAsO ₄ -1^{a}	962, 871, 920	This work	
$AlAsO_4 - 3$	857	This work	
AlAsO ₄ -4 ^a	779, 963, 920	This work	

^a The frequencies are in order of intensity.

monium, α -AlPO₄, AlPO₄-5 with occluded triethylamine, α -AlAsO₄, AlAsO₄–1, AlAs O_4 -3, and AlAsO₄-4. The corresponding IR spectra of AlAsO₄-3 and AlAsO₄-4 within 4000 to 400 cm^{-1} are shown in Fig. 3. According to Flanigen et al., the main IR absorptions $(1200-950 \text{ cm}^{-1})$ of zeolites with open frameworks composed of SiO₄ and AlO₄ units are always assigned to the T-O (T = Si and Al without distinguishing between them) asymmetric stretch vibrations (23-25). In general, with increase of the Si/Al ratio in the framework, the main IR absorption shifts toward higher frequency. The main IR absorptions of α -quartz type AlPO₄ (26, 27) and AlPO₄-5 (28) around 1120 cm⁻¹ are also assigned to the T-O (T= Al and P) asymmetric stretch vibrations without distinguishing between the Al and the P atoms. In addition, the removal of the occluded templates has no influence on the main IR absorptions both for the ZSM-5 and the AlPO₄-5, revealing that the templates do not contribute to the main IR absorptions of these compounds.

It is expected that the T-O vibrational absorptions of aluminoarsenates should shift toward lower frequencies compared with the corresponding absorptions of aluminophosphates because of the larger mass of

As relative to that of P. In fact, α -quartz type AlAsO₄ shows (7) a strong IR vibrational band with maximum at 945 cm^{-1} , almost 200 cm⁻¹ lower than the corresponding vibrational frequencies for α -AlPO₄ and AlPO₄-5. The strongest IR absorption of AlAsO₄-3 is at 857 cm⁻¹, even 88 cm⁻¹ lower than that of α -AlAsO₄. Similarly, we assign the absorption to the T-O(T = Al and As) asymmetric stretch vibration neglecting the influence of the occluded template as for ZSM-5 and AlPO₄-5. The relatively lower vibrational frequency suggests that the Al-O-As bond force in AlAsO₄-3 is weaker than that in α -AlAsO₄. This result may be related to the octahedrally coordinated Al atoms in the former. AlAsO₄-4 has an extremely different whereas much more complicated IR spectrum. The strongest absorption band appears at 779 cm⁻¹, meanwhile, there are another two strong absorptions with intensities next to the strongest one at 963 and 920 cm^{-1} , respectively. Since there is no strong absorption around these frequencies in the corresponding spectrum of AlAsO $_4$ -3 whose template is the same as that of $AlAsO_4-4$, all the three absorptions for AlAsO₄-4 must be attributed to the framework of $AlAsO_4-4$ rather than

FIG. 3. IR spectra of (a) $AlAsO_4-3$ and (b) $AlAsO_4-4$.

the template it occludes. The first is 166 cm⁻¹ lower in frequency than the strong absorption of α -AlAsO₄. The second and the third absorptions are close to the higher-frequency absorption of AlAsO₄-1 as well as the strong absorption of α -AlAsO₄. Consequently, we conclude that AlAsO₄-4 may contain Al-O-As with bond force as strong as α -AlAsO₄ and that with bond force even weaker than AlAsO₄-3. Further assignment of the absorptions is difficult.

To investigate the thermal properties of AlAsO₄-3 and AlAsO₄-4, DTA-TG analyses in N₂ atmosphere were carried out and the curves are shown in Fig. 4. For AlAsO₄-3, there exists an endothermic effect near 360°C and two exothermic ones around 507 and 790°C, respectively. The TG curve can be divided into two stages ranging from 300 to 650°C and 650 to 800°C. The corresponding weight losses are 20.7 and 21.9%, respectively with a total of 42.6%. Apparently, some amount of framework atoms escaped from the solid after calcination at high temperature since the content of the template and water did not exceed 15% in AlAsO₄-3. The chemical analysis showed that the As/Al ratio in the calcination residual of AlAsO₄-3 was

FIG. 4. DTA-TG curves in N₂ atmosphere of (a) AlAsO₄⁻³ and (b) AlAsO₄⁻⁴. Temperature rate = 10° C/min and N₂ stream speed = 50 ml/min.

as low as 0.3, revealing that it was arsenic that escaped from the solid at high temperature. Furthermore, the major components of the gas produced within 300-400°C were confirmed by mass spectroscopy to be water and decomposition products of 1.2diaminopropane. This suggests that the thermal effect around 360°C should be mainly attributed to the sublimation of the occluded water and the pyrolysis of the template. The exothermic effect around 507°C may be due to the oxidation-reduction of the framework As(V) and the template, and that around 790°C to a phase transition of the solid since there is no distinct weight loss observed corresponding to the effect. After calcination at 400°C, $AlAsO_4-3$ becomes amorphous in terms of the X-ray powder diffraction pattern, indicating this compound is not as stable as most $AIPO_4 - n$. $AIAsO_4 - 4$ shows three distinct endothermic DTA effects with peak maxima at 271, 361, and 625°C, respectively. The mass spectroscopy proves that the first is exclusively attributed to water loss and the second to both templete pyrolysis and water loss. This result implies the presence of two types of water molecules in $AlAsO_4-4$, one being bonded loosely and the other being bonded tightly. The third effect, that around 625°C, may be assigned to a dramatic loss of the framework arsenic since at such high temperature template molecules should not remain for pyrolysis. At every temperature around which thermal effect appears, evident weight loss is observed on the TG curve. In addition, there is a pronounced weight loss around 800°C without observable thermal effect. The total weight loss for AlA sO_4-4 is about 37.8%, less than that of AlAsO₄-3 but also suggests the sublimation of framework arsenic from the solid because the content of the template and water is only about 12% according to the composition. The As/Al ratio in the calcination residual of AlAsO₄-4 is about 0.5, well comparable to the value for AlAs O_4-3 . Differing from that of AlAs O_4-3 , the DTA curve of AlAs O_4-4 shows no distinct exothermic effect, suggesting that the reaction of As(V)-template is not dramatic. It is also indicated by X-ray powder diffraction that calcined at 400°C, AlA sO_4-4 changes from crystalline form to amorphous form.

In summary, the successful preparation of the third and fourth amine-occluding aluminoarsenates illustrates that as the AlPO₄-n family, the AlAsO₄-n family may be extended to include a large number of members. Generally, $AlAsO_4 - n$ contain octahedrally coordinated Al atoms. Some of them contain both octahedrally and tetrahedrally coordinated Al atoms. Unlike AlPO₄-n, AlAsO₄-n are unstable at higher temperature. With the increase of the calcination temperature, the framework arsenic as well as the template occluded volatilize from the solid, revealing that $AlAsO_4 - n$ are not suitable to be used as molecular sieves as AlPO₄-n are.

References

- S. T. WILSON, B. M. LOK, C. A. MESSINA, T. R. CANNAN AND E. M. FLANIGEN, J. Amer. Chem. Soc. 104, 1146 (1982).
- J. V. SMITH AND W. J. DYTRYCH, Nature (London) 309, 607 (1984).
- 3. H. RASTELLI, B. M. LOK, J. A. DUISMAN, D. E. EARLS, AND J. T. MULLHAUPT, Canad. J. Chem. Eng 60, 44 (1982).
- 4. J. V. SMITH, Chem. Rev. 88, 149 (1988).
- E. M. FLANIGEN, B. M. LOK, R. L. PATTON, AND S. T. WILSON, *Pure Appl. Chem.* 58(10), 1351 (1986).
- M. E. DAVIS, C. SALDARRIAGA, C. MONTES, J. GARCES, AND C. CROWDER, *Nature (London)* 331, 698 (1988).
- 7. A. P. YOUNG, C. B. SCLAR, AND C. M. SCHWARTZ, Z. Kristallogr. 118, 223 (1963).

- 8. A. GOIFFON, J. C. JUMAS, M. MAURIN, AND E. PHILIPPOT, J. Solid State Chem. 61, 384 (1986).
- 9. P. P. TARTE AND M. TH. PAQUES-LEDENT, Bull. Soc. Chim. Fr. 750 (1968).
- G. YANG, L. LI, J. CHEN, AND R. XU, J. Chem. Soc., Chem. Commun. 810 (1989).
- J. CHEN AND R. XU, J. Solid State Chem. 80, 149 (1989).
- W. M. MEIER AND D. H. OLSON, "Atlas of Zeolite Structure Types," 2nd ed., p. 28, Butterworths/ Int. Zeolite Assoc., 1987.
- J. V. SMITH, "Proc. 8th Intl. Zeolite Conf., Studies in Surf. Sci. Catal., 49A" (P. A. Jacobs and R. A. Van Souten, Eds.), p. 29, Elsevier, Amsterdam/ New York (1989).
- 14. P. E. WERNER, L. ERIKSSON, AND M. WESTDAHL, J. Appl. Crystallogr. 18, 367 (1985).
- D. MULLER, E. JAHN, B. FAHLKE, G. LADWIG, AND U. HAUBENREISSER, Zeolites 5, 53 (1985).
- 16. I. P. APPLEYARD, R. K. HARRIS, AND F. R. FITCH, Zeolites 6, 428 (1986).
- 17. C. S. BLACKWELL AND R. L. PATTON, J. Phys. Chem. 92, 3965 (1988).
- 18. R. DUPREE AND M. E. SMITH, J. Chem. Soc., Chem. Commun. 1483 (1988).
- N. S. KOTSARENKO, V. M. MASTIKHIN, I. L. MU-DRAKOUSKII AND V. P. SHMACHKOVA, *React. Ki*net. Catal. Lett. 30(2), 375 (1986).
- 20. J. B. PARISE, J. Chem. Soc., Chem. Commun. 606 (1985).
- 21. J. B. PARISE, Inorg. Chem. 24, 4312 (1985).
- 22. J. M. BENNETT, J. M. COHEN, G. ARTIOLI, J. J. PLUTH, AND J. V. SMITH, *Inorg. Chem.* 24, 188 (1985).
- E. M. FLANIGEN, H. KATHAMI, AND H. A. SZY-MANSKI, "Adv. Chem. Series 101, Molecular Sieve Zeolites," p. 201 (1971).
- 24. P. A. JACOBS, H. K. BAYER, AND J. VALYON, Zeolites 1, 161 (1981).
- 25. V. A. MARONI, Appl. Spectrosc. 42(3), 488 (1988).
- 26. J. T. SCOTT, Phys. Rev. B 4(4), 1360 (1971).
- K. BYRAPPA, S. SRIKANTASWAMY, G. S. GOPALA-KRISHNA, AND V. VENKATACHALAPATHY, J. Mater. Sci. Lett. 5, 203 (1986).
- Y. XU, X. JIANG, X. MENG, AND R. XU, Acta Pet. Sin. 3, 101 (1987).